Abstract
L-Threonine dehydrogenase, which catalyzes the conversion of L-threonine to aminoacetone + CO2 presumably via the intermediate formation of alpha-amino-beta-ketobutyrate, has been purified to apparent homogeneity from extracts of a mutant of Escherichia coli K-12 which has constitutively derepressed levels of the enzyme. Three fractionation steps were used including controlled heat denaturation, DEAE-Sephadex chromatography, and blue dextran-Sepharose affinity chromatography. The purified enzyme migrated as a single band, coincident with dehydrogenase activity, when electrophoresed on polyacrylamide gels at pH 8.0 and 9.5. Electrophoresis in 1% sodium dodecyl sulfate also showed one band and a single schlieren peak was seen during sedimentation velocity centrifugation. The enzyme has an apparent molecular weight of 140,000 +/- 4,000 as determined by sucrose density and sedimentation equilibrium centrifugation. Based on electrophoresis in 1% sodium dodecyl sulfate, sedimentation equilibrium centrifugation in 6 M guanidine.HCl, and cross-linking with dimethyl suberimidate, the molecule is a tetramer consisting of identical (or nearly identical) subunits with Mr approximately equal to 35,000. L-Threonine dehydrogenase is specific for NAD+ or NAD+ analogs and utilizes L-threonine, D-allothreonine, or L-threonine amide as the best substrates. In 50 mM Tris.HCl buffer (pH 8.4) and 37 degrees C, the Km values for L-threonine and NAD+ are 1.43 and 0.19 mM, respectively. The enzyme has a pH optimum of 10.3, is activated by Mn2+, and shows a substantial loss of activity when treated with certain sulfhydryl-reacting reagents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.