Abstract

l-Stepholidine (l-SPD), a tetrahydroprotoberberine alkaloid, possesses a pharmacological profile of a D₁/5-HT(1A) agonist and a D₂ antagonist. This unique pharmacological profile makes it a promising novel antipsychotic candidate. Preliminary clinical trials and animal experiments suggest that l-SPD improves both positive and negative symptoms of schizophrenia without producing significant extrapyramidal side effects. To further explore the antipsychotic mechanisms of the drug, we studied the effects of l-SPD on the activity of dopamine (DA) neurons in the ventral tegmental area (VTA) using in vivo single-unit recording technique in rats. We found that l-SPD increased VTA DA neurons firing rate and induced slow oscillation in firing pattern. Moreover, l-SPD, not clozapine, reversed d-amphetamine-induced inhibition which induced an excitation of VTA DA neurons. Furthermore, our data indicated that the excitatory effect of l-SPD is associated with its partial agonistic action for the 5-HT(1A) receptor since the 5-HT(1A) receptor antagonist WAY100635 could block the l-SPD-induced excitatory effect. However, activation of 5-HT(1A) receptor alone by specific agonist (±)-8-Hydroxy-2-(dipropylamino) tetralin (8-OH-DPAT) was insufficient to elicit excitation of VTA DA neurons, but the excitation of 8-OH-DPAT on VTA DA neurons was elicited in the presence of D₂-like receptors antagonist raclopride. Collectively, these results indicate that l-SPD excited VTA DA neurons requiring its D₂-like receptors antagonistic activity and 5-HT(1A) receptor agonistic activity. The present data demonstrate that D₂ receptor antagonist/5-HT(1A) receptor agonistic dual properties modulate dopaminergic transmission in a unique pattern that may underlie the different therapeutic responses between l-SPD and other atypical antipsychotic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call