Abstract

Stereoselective recognition of amino acids is extremely important due to its high chirality-dependent interactions and physiological activities in life activities. We herein report a novel functionalized chiral fluorescent nanosensor prepared from surface modification of CdSe/ZnS quantum dots (QDs) with pyroglutamic acid derivatives, which could serve as a chiral recognition module for fluorescence detection of chiral molecules. The sensor exhibited a unique stereoselective fluorescence response to histidine (His), glutamate (Glu), and dihydroxyphenylalanine (Dopa) and had preferable response performance to l-enantiomers. The enantiomeric fluorescence difference ratios of His, Glu, and Dopa enantiomers were 3.90, 3.40, and 2.49, respectively. The mechanism for the enantiomeric fluorescence recognition was systematically studied through a fluorescence spectrum, fluorescence life, and density functional theory (DFT) calculation. Presumably, the different hydrogen bonding capacity of the chiral recognition module with two enantiomers mainly contributed to the difference in fluorescence signals. As a result, a broader application of the pyroglutamic acid derivative-coated QDs as a fluorescence-responsive chiral sensing platform for enantiomeric detection would be expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.