Abstract

Acetylcholinesterase (AChE) terminates the action of the neurotransmitter acetylcholine at cholinergic synapses in the central and peripheral nervous systems. Fasciculins, which belong to the family of "three-fingered" snake toxins, selectively inhibit mammalian AChEs with Ki values in the picomolar range. In solution, the cationic fasciculin appears to bind to the enzyme's peripheral anionic site, located near the mouth of the gorge leading to the active center, to inhibit catalysis either allosterically or by creating an electrostatic barrier at the gorge entry (or both). Yet the crystal structure of the fasciculin-mouse AChE complex, which shows that the central loop of fasciculin fits snugly at the entrance of the gorge, suggests that the mode of action of fasciculin is steric occlusion of substrate access to the active center. Mutagenesis of the fasciculin molecule, undertaken to establish a functional map of the binding surfaces, identified determinants common to those identified by the structural approach and revealed that only a few of the many fasciculin residues residing at the complex interface provide the strong contacts required for high affinity binding and enzyme inhibition. However, it did not reconcile the disparity between the kinetic and structural data. Finally, the crystal structure of mouse AChE without bound fasciculin shows a tetrameric assembly of subunits; within the tetramer, a short loop at the surface of a subunit associates with the peripheral site of a facing subunit and sterically occludes the entrance of the active center gorge. The position and complementarity of the peripheral site-occluding loop mimic the characteristics of the central loop of fasciculin bound to AChE. This suggests not only that the peripheral site of AChE is a site for association of heterologous proteins with interactive surface loops, but also that endogenous peptidic ligands of AChE sharing structural features with the fasciculin molecule might exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.