Abstract
Yau made the following conjecture: For a complete noncompact manifold with nonnegative Ricci curvature the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional. we extend the result on the Laplace operator to that on the symmetric diffusion operator, and prove the space of L-harmonic functions with polynomial growth of a fixed rate is finite-dimensional, when m-dimensional Bakery-Emery Ricci curvature of the symmetric diffusion operator on the complete noncompact Riemannian manifold is nonnegative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.