Abstract
The catabolism of D-glucose was recently found to be impaired in pancreatic islets from rats depleted in long-chain polyunsaturated omega3 fatty acids. The specificity of this alteration was now investigated by characterizing the oxidative fate of endogenous nutrients in islets preincubated with either L-[U-14C]glutamine or [U-14C]palmitate and then incubated variously in the absence of D-glucose, presence of the hexose or presence of metabolic poisons. Relative to their radioactive content after preincubation, the production of 14CO2 by islets prelabelled with [U-14C]glutamine was higher in omega3-depleted rats than control animals. The enhancing action of D-glucose upon such production was impaired, however, in the omega3-depleted rats. The net uptake of 14C-palmitate and absolute value for 14CO2 output were both increased in omega3-depleted rats, whilst the ratio between 14CO2 output and islet radioactive content was decreased in the same animals. The inhibition of 14CO2 production by metabolic poisons was comparable in all cases. These results are consistent with recent findings on such items as the availability of endogenous amino acids and uptake of unesterified fatty acids in extrapancreatic sites of the omega3-depleted rats. They also support the view that the alteration of D-glucose metabolism in the islets of the latter animals may be attributable, in part at least, to alteration of glucokinase kinetics by high intracellular acyl-CoA levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.