Abstract
The L-function of symmetric powers of classical Kloosterman sums is a polynomial whose degree is now known, as well as the complex absolute values of the roots. In this paper, we provide estimates for the p-adic absolute values of these roots. Our method is indirect. We first develop a Dwork-type p-adic cohomology theory for the two-variable infinite symmetric power L-function associated to the Kloosterman family, and then study p-adic estimates of the eigenvalues of Frobenius. A continuity argument then provides the desired p-adic estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.