Abstract

L-Fucose is one of the key metabolites in human-gut microbiome interactions. It is continuously synthesized by humans in the form of fucosylated glycans and fucosyl-oligosaccharides and delivered into the gut throughout their lifetime. Gut microorganisms metabolize L-fucose and produce short-chain fatty acids, which are absorbed by epithelial cells and used as energy sources or signaling molecules. Recent studies have revealed that the carbon flux in L-fucose metabolism by gut microorganisms is distinct from that in other sugar metabolisms because of cofactor imbalance and low efficiencies in energy synthesis of L-fucose metabolism. The large amounts of short-chain fatty acids produced during microbial L-fucose metabolism are used by epithelial cells to recover most of the energy used up during L-fucose synthesis. In this review, we present a detailed overview of microbial L-fucose metabolism and a potential solution for disease treatment and prevention using genetically engineered probiotics that modulate fucose metabolism. Our review contributes to the understanding of human-gut microbiome interactions through L-fucose metabolism. KEY POINTS: • Fucose-metabolizing microorganisms produce large amounts of short-chain fatty acids • Fucose metabolism differs from other sugar metabolisms by cofactor imbalance • Modulating fucose metabolism is the key to control host-gut microbiome interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.