Abstract

The noise behavior of lipid bilayer membranes, doped with a chemically dimerized gramicidin A, was investigated. In contrast to normal gramicidin A, which generates a Lorentzian type power spectrum due to the formation and disappearance of conducting dimers, the current power spectrum density Sm(f) obtained with this gramicidin A derivative showed over several orders of magnitude a clear l/f behavior. The intensity of this l/f component was analyzed as a function of the membrane-applied voltage, membrane resistance, electrolyte concentration, and composition. The relationship between the mean-square fluctuation in current and the membrane current mean value was found to follow Hooge's equation, i.e., deltaI2 = alphaI2m/Nf where N is the number of channels and alpha is a constant equal to 1.0 X 10(-2). It is suggested that a l/f type noise was observed because the chemically dimerized form of gramicidin A produces long lasting cation selective channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.