Abstract

Neuronal loss and dopamine depletion alter motor signal processing between cortical motor areas, basal ganglia, and the thalamus, resulting in the motor manifestations of Parkinson's disease. Dopamine replacement therapy can reverse these manifestations with varying degrees of improvement. To evaluate functional connectivity in patients with advanced Parkinson's disease and changes in functional connectivity in relation to the degree of response to l-dopa, 19 patients with advanced Parkinson's disease underwent resting-state functional magnetic resonance imaging in the on-medication state. Scans were obtained on a 3-Tesla scanner in 3 × 3 × 2.5 mm3 voxels. Seed-based bivariate regression analyses were carried out with atlas-defined basal ganglia regions as seeds, to explore relationships between functional connectivity and improvement in the motor section of the UPDRS-III following an l-dopa challenge. False discovery rate-corrected P was set at < 0.05 for a 2-tailed t test. A greater improvement in UPDRS-III scores following l-dopa administration was characterized by higher resting-state functional connectivity between the prefrontal cortex and the striatum (P = 0.001) and lower resting-state functional connectivity between the pallidum (P = 0.001), subthalamic nucleus (P = 0.003), and the paracentral lobule (supplementary motor area, mesial primary motor, and primary sensory areas). Our findings show characteristic basal ganglia resting-state functional connectivity patterns associated with different degrees of l-dopa responsiveness in patients with advanced Parkinson's disease. l-Dopa exerts a graduated influence on remapping connectivity in distinct motor control networks, potentially explaining some of the variance in treatment response. © 2017 International Parkinson and Movement Disorder Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.