Abstract
Adrenergic receptors (ADRs) are widely distributed in the peripheral and central nervous systems. We previously reported that L-3,4-dihydroxyphenylalanine (L-DOPA), the precursor of dopamine, sensitizes adrenergic α1 receptor (ADRA1) through a G protein-coupled receptor GPR143. Chimeric analysis, in which the transmembrane (TM) domains of GPR143 were replaced with those of GPR37, revealed that the second TM region was essential for the potentiation of phenylephrine-induced extracellular signal-regulated kinase (ERK) phosphorylation by GPR143. In HEK293T cells expressing ADRA1B, phenylephrine-induced ERK phosphorylation was augmented by the co-expression of GPR143, compared to the mock vector. Immunoprecipitation analysis revealed that a synthetic transactivator of the transcription peptide fused with TM2 of GPR143 (TAT-TM2) disrupts the interaction between GPR143 and ADRA1B. This TAT-TM2 peptide suppressed the augmentation of phenylephrine-induced ERK phosphorylation by GPR143 in HEK293T cells co-expressing ADRA1B and GPR143. These results indicate that the interaction between GPR143 and ADRA1B is required for the potentiation of ADRA1B-mediated signaling by GPR143. The TM2 region of GPR143 is a crucial dimeric interface for the functional coupling between ADRA1B and GPR143.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.