Abstract

L-Cysteine (L-Cys) is implicated in the reduction of free radical production. The aim of this study was to investigate whether L-Cys supplementation prevents modulation of the activities of erythrocyte membrane acetylcholinesterase (AChE), Na(+),K(+)-ATPase and Mg(2+)-ATPase induced by free radicals in basketball players during training. Blood was obtained from 10 basketball male players before (group A) and after a game (group B) and after 1 week of L-Cys (0.5 g/24 h orally) supplementation before (group C) and after training (group D). Lactate, pyruvate and total antioxidant status (TAS) were measured using commercial kits and the enzyme activities were determined spectrophotometrically. Both lactate and pyruvate levels remarkably increased after exercise. In contrast, TAS levels significantly decreased in group B, increased in group C and then declined (group D), reaching those of group A. AChE activity was statistically increased post-exercise (3.98+/-0.04 Delta OD/min x mg protein) compared with pre-training (2.90+/-0.05 Delta OD/min x mg protein, p<0.01). Na(+),K(+)-ATPase activity was also higher post-exercise (1.27+/-0.05 micromol Pi/h x mg protein) than that pre-exercise (0.58+/-0.04 micromol Pi/h x mg protein, p<0.001). When the players were supplemented with L-Cys, both AChE and Na(+),K(+)-ATPase activities remained unaltered post-exercise. Mg(2+)-ATPase activities were unchanged in all groups studied. L-Cys supplementation may protect the enzyme activities studied against stimulation induced by free radical production during training in athletes by ameliorating their total antioxidant capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call