Abstract

Hydrogen sulfide (H(2)S) was historically recognized as a toxic gas generated by natural resources. However, its enzymatic production from L-cysteine has recently been demonstrated in mammals. Cystathionine beta-synthase and cystathionine gamma-lyase, both of which can produce H(2)S, were expressed in mouse pancreatic islet cells and the beta-cell line, MIN6. L-cysteine and the H(2)S donor NaHS inhibited glucose-induced insulin release from islets and MIN6 cells. These inhibitory effects were reproduced when insulin release was stimulated by alpha-ketoisocaproate, tolbutamide, or high K+. L-cysteine and NaHS inhibited glucose-potentiated insulin release in the copresence of diazoxide and high K+. Real-time imaging of intracellular Ca2+ concentration ([Ca2+](i)) demonstrated that both L-cysteine and NaHS reversibly suppressed glucose-induced [Ca2+](i) oscillation in a single beta-cell without obvious changes in the mean value. These substances inhibited Ca2+ - or guanosine 5'-0-3-thiotriphosphate-induced insulin release from islets permeabilized with streptolysin-O. L-cysteine and NaHS reduced ATP production and attenuated glucose-induced hyperpolarization of the mitochondrial membrane potential. Finally, L-cysteine increased H(2)S content in MIN6 cells. We suggest here that L-cysteine inhibits insulin release via multiple actions on the insulin secretory process through H(2)S production. Because the activities of H(2)S-producing enzymes and the tissue H(2)S contents are known to increase under diabetic conditions, the inhibition may participate in the deterioration of insulin release in this disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.