Abstract
We successfully applied the novel l-cysteine (RSH) induced manganese porphyrin (MnTPP) electrocatalytic amplification in electrochemical aptasensor for detection of thrombin (TB) with the 3D DNA-Au@Pt nanoparticles (DNA-Au@Pt NPs) as nanocarrier. A further discussion for the suggested mechanism of the reaction involved the MnTPP-catalyzed oxidation of thiols (RSH) to disulfides l-cystine (RSSR) was also discussed in detail in this work. In comparison with traditional H2O2 mediated MnTPP electrocatalytic amplification, the novel reaction with more stable catalytic substrate RSH possessed high catalytic amplification efficiency. In addition, the 3D DNA-Au@Pt NPs could provide abundant binding sites for immobilizing signal tags and enzymes. As a result, the electrochemical signal can be greatly enhanced by the RSH mediated MnTPP electrocatalytic reaction and 3D DNA-Au@Pt NPs. Under optimal conditions, the proposed aptasensor exhibited a wider linear range of 0.1pM–100nM with a more sensitive detection limit of 29fM for TB detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.