Abstract

Absorption of L-M and L-N transitions of nickel has been measured using point projection spectroscopy. The x-ray radiation from laser-irradiated gold cavities was used to heat volumetrically nickel foils "tamped with carbon" up to 20 eV. Experimental spectra have been analyzed with calculations based on the spin-orbit split arrays statistical approach and performed for each ionic species Ni5+ to Ni11+. Using a least-squares fit, this method provides an ion distribution broader than at local thermodynamic equilibrium, which is explained by spatial and temporal temperature gradients. A major improvement in the simulation of the absolute value of transmission is obtained with a resolved transition array statistical calculation that reproduces the experimental spectrum with the nominal areal mass density by taking into account the saturation of narrow lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.