Abstract

Altimetry is now routinely used to monitor stage variations over rivers, including in the Amazon basin. It is desirable for hydrologic studies to be able to combine altimetry from different satellite missions with other hydrogeodesy datasets such as leveled gauges and watershed topography. One requirement is to accurately determine altimetry bias, which could be different for river studies from the altimetry calibrated for deep ocean or lake applications. In this study, we estimate the bias in the Envisat ranges derived from the ICE-1 waveform retracking, which are nowadays widely used in hydrologic applications. As a reference, we use an extensive dataset of altitudes of gauge zeros measured by GPS collocated at the gauges. The thirty-nine gauges are spread along the major tributaries of the Amazon basin. The methodology consists in jointly modeling the vertical bias and spatial and temporal slope variations between altimetry series located upstream and downstream of each gauge. The resulting bias of the Envisat ICE-1 retracked altimetry over rivers is 1.044 ± 0.212 m, revealing a significant departure from other Envisat calibrations or from the Jason-2 ICE-1 calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.