Abstract

Zn2+ can interact with adenosine 5′-triphosphate (ATP) by electrostatic and coordination interactions, and the interaction sites between Zn2+ and ATP vary at different pH in the ATP–Zn2+ binary system. Non-covalent interactions exist between the carboxyl of arginine (Arg) and Zn2+, which led to competition between ATP and Arg to interact with Zn2+ in the ATP–Zn2+–Arg ternary system. Kinetics studies show that the hydrolysis rate constant of ATP in the ATP–Zn2+ binary system was 2.44 × 10−2 min−1, about 11-fold faster than that (2.27 × 10−3 min−1) in the ATP–Zn2+–Arg ternary system. This may be attributed to coordination interactions between the carboxyl of Arg and Zn2+ and the decreased activity of zinc ion toward the phosphate groups via nucleophilic attack. A mechanism that the hydrolysis occurred through an addition–elimination mechanism is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.