Abstract
Retinal ganglion cell apoptotic death is the main pathological characteristic of glaucoma, which is the leading cause of irreversible blindness. Disruption of Ca2+ homeostasis plays an important role in glaucoma. Voltage-gated Ca2+ channel blockers have been shown to improve vision in patients with glaucoma. However, whether and how voltage-gated Ca2+ channels are involved in retinal ganglion cell apoptotic death are largely unknown. In this study, we found that total Ca2+ current densities in retinal ganglion cells were reduced in a rat model of chronic ocular hypertension experimental glaucoma, as determined by whole-cell patch-clamp electrophysiological recordings. Further analysis showed that L-type Ca2+ currents were downregulated while T-type Ca2+ currents were upregulated at the later stage of glaucoma. Western blot assay and immunofluorescence experiments confirmed that expression of the CaV1.2 subunit of L-type Ca2+ channels was reduced and expression of the CaV3.3 subunit of T-type Ca2+ channels was increased in retinas of the chronic ocular hypertension model. Soluble tumor necrosis factor-α, an important inflammatory factor, inhibited the L-type Ca2+ current of isolated retinal ganglion cells from control rats and enhanced the T-type Ca2+ current. These changes were blocked by the tumor necrosis factor-α inhibitor XPro1595, indicating that both types of Ca2+ currents may be mediated by soluble tumor necrosis factor-α. The intracellular mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and nuclear factor kappa-B signaling pathway mediate the effects of tumor necrosis factor-α. TUNEL assays revealed that mibefradil, a T-type calcium channel blocker, reduced the number of apoptotic retinal ganglion cells in the rat model of chronic ocular hypertension. These results suggest that T-type Ca2+ channels are involved in disrupted Ca2+ homeostasis and apoptosis of retinal ganglion cells in glaucoma, and application of T-type Ca2+ channel blockers, especially a specific CaV3.3 blocker, may be a potential strategy for the treatment of glaucoma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.