Abstract

Our previous studies showed that L-3-n-butylphthalide (L-NBP), an extract from seeds of Apium graveolens Linn (Chinese celery), improved cognitive ability in animal models of cerebral ischemia, vascular dementia, and Alzheimer's disease (AD). It is well known that cognitive deficit of AD is caused by synaptic dysfunction. In this study, we investigated the effect of L-NBP on hippocampal synaptic function in APP/PS1 AD transgenic mice and related mechanisms. Eighteen-month-old APP/PS1 transgenic (Tg) mice were administrated 15 mg/kg L-NBP by oral gavage for 3 months. Synaptic morphology and the thickness of postsynaptic density (PSD) in hippocampal neurons were investigated by electron microscope. The dendritic spines, Aβ plaques, and glial activation were detected by staining. The expressions of synapse-related proteins were observed by Western blotting. L-NBP treatment significantly increased the number of synapses and apical dendritic thorns and the thickness of PSD, increased the expression levels of synapse-associated proteins including PSD95, synaptophysin (SYN), β-catenin, and GSK-3β, and attenuated Aβ plaques and neuroinflammatory responses in aged APP/PS1 Tg mice. L-NBP may restore synaptic and spine function in aged APP Tg mice through inhibiting Aβ plaques deposition and neuroinflammatory response. Wnt/β-catenin signaling pathway may be involved in L-NBP-related restoration of synaptic function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.