Abstract
We examine the L2-topology of the gauge orbits over a closed Riemann surface. We prove a subtle local slice theorem based on the div-curl lemma of harmonic analysis, and deduce local pathwise connectedness of the gauge orbits. Based on a quantitative version of the connectivity, we generalize compactness results for anti-self-dual instantons with Lagrangian boundary conditions to general gauge-invariant Lagrangian submanifolds. This provides the foundation for the construction of instanton Floer homology for pairs of a 3-manifold with boundary and a Lagrangian in the configuration space over the boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.