Abstract

The varying coefficient model is a useful extension of linear models and has many advantages in practical use. To estimate the unknown functions in the model, the kernel type with local linear least-squares (L 2) estimation methods has been proposed by several authors. When the data contain outliers or come from population with heavy-tailed distributions, L 1-estimation should yield better estimators. In this article, we present the local linear L 1-estimation method and derive the asymptotic distributions of the L 1-estimators. The simulation results for two examples, with outliers and heavy-tailed distribution, respectively, show that the L 1-estimators outperform the L 2-estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.