Abstract

The goal of this paper is to study some numerical approximations of particular Hamilton-Jacobi-Bellman equations in dimension 1 and with possibly discontinuous initial data. We investigate two anti-diffusive numerical schemes, the first one is based on the Ultra-Bee scheme and the second one is based on the Fast Marching Method. We prove the convergence and derive $L^1$-error estimates for both schemes. We also provide numerical examples to validate their accuracy in solving smooth and discontinuous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.