Abstract

The Lax operator of Gaudin-type models is a 1-form at the classical level. In virtue of the quantization scheme proposed by D. Talalaev, it is natural to treat the quantum Lax operator as a connection; this connection is a partcular case of the Knizhnik–Zamolodchikov connection. In this paper, we find a gauge trasformation that produces the “second normal form,” or the “Drinfeld–Sokolov” form. Moreover, the differential operator nurally corresponding to this form is given precisely by the quantum characteristic polynomial of the Lax operator (this operator is called the G-oper or Baxter operator). This observation allows us to relate solutions of the KZ and Baxter equations in an obvious way, and to prove that the immanent KZ equation has only meromorphic solutions. As a corollary, we obtain the quantum Cayley–Hamilton identity for Gaudin-type Lax operators (including the general $ \mathfrak{gl}_{n}[t] $ case). The presented construction sheds a new light on the geometric Langlands correspondence. We also discuss the relation with the Harish-Chandra homomorphism. Bibliography: 19 titles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.