Abstract

Unikernel specializes a minimalistic LibOS and a target application into a standalone single-purpose virtual machine (VM) running on a hypervisor, which is referred to as (virtual) appliance . Compared to traditional VMs, Unikernel appliances have smaller memory footprint and lower overhead while guaranteeing the same level of isolation. On the downside, Unikernel strips off the process abstraction from its monolithic appliance and thus sacrifices flexibility, efficiency, and applicability. In this article, we examine whether there is a balance embracing the best of both Unikernel appliances (strong isolation) and processes (high flexibility/efficiency). We present KylinX, a dynamic library operating system for simplified and efficient cloud virtualization by providing the pVM (process-like VM) abstraction. A pVM takes the hypervisor as an OS and the Unikernel appliance as a process allowing both page-level and library-level dynamic mapping. At the page level, KylinX supports pVM fork plus a set of API for inter-pVM communication (IpC, which is compatible with conventional UNIX IPC). At the library level, KylinX supports shared libraries to be linked to a Unikernel appliance at runtime. KylinX enforces mapping restrictions against potential threats. We implement a prototype of KylinX by modifying MiniOS and Xen tools. Extensive experimental results show that KylinX achieves similar performance both in micro benchmarks (fork, IpC, library update, etc.) and in applications (Redis, web server, and DNS server) compared to conventional processes, while retaining the strong isolation benefit of VMs/Unikernels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call