Abstract
Modest decreases in extracellular osmolarity induce brain hyperexcitability that may culminate in epileptic seizures. At the cellular level, moderate hyposmolarity markedly potentiates the intrinsic neuronal excitability of principal cortical neurons without significantly affecting their volume. The most conspicuous cellular effect of hyposmolarity is converting regular firing neurons to burst-firing mode. This effect is underlain by hyposmotic facilitation of the spike afterdepolarization (ADP), but its ionic mechanism is unknown. Because blockers of K(V)7 (KCNQ) channels underlying neuronal M-type K(+) currents (K(V)7/M channels) also cause spike ADP facilitation and bursting, we hypothesized that lowering osmolarity inhibits these channels. Using current- and voltage-clamp recordings in CA1 pyramidal cells in situ, we have confirmed this hypothesis. Furthermore, we show that hyposmotic inhibition of K(V)7/M channels is mediated by an increase in intracellular Ca(2+) concentration via release from internal stores but not via influx of extracellular Ca(2+). Finally, we show that interfering with internal Ca(2+)-mediated inhibition of K(V)7/M channels entirely protects against hyposmotic ADP facilitation and bursting, indicating the exclusivity of this novel mechanism in producing intrinsic neuronal hyperexcitability in hyposmotic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.