Abstract

Effects of neutralizing individual negatively charged (acidic [E,D]) and innermost positively charged (basic [K,R]) residues in transmembrane segments S2 (D230Q, E240Q), S3 (D263Q) and S4 (K299A/Q, R302A/Q) of the KV4.3 putative voltage sensing domain (VSD) were determined. S2 D230Q generated large macroscopic currents, depolarized steady-state activation ("a4") and isochronal (1 sec) inactivation ("i") relationships, and significantly accelerated kinetics of deactivation and recovery (from both macroscopic and closed state inactivation [CSI]). D230Q thus stabilized non-inactivated closed states. These effects were attributable to structural perturbations, and indicated D230 is not primarily involved in voltage sensing. Both S2 E240Q and S3 D263Q failed to generate measurable ionic currents, suggesting deletion of negative charges at these putatively more intracellular acidic positions were functionally "lethal" to macroscopic KV4.3 function. S4 innermost positive charge deletion mutants K299A/Q and R032A/Q generated functional currents with reduced peak amplitudes. While reduced K299A/Q and R302A/Q currents prevented accurate determination of "a4" and estimates of potential electrostatic perturbations, both sets of mutants: (i) depolarized potentials at which currents could be macroscopically detected, consistent with stabilization of closed states (structural perturbations); and (ii) accelerated macroscopic recovery. These results provide further evidence that: (i) basic residues in S4 are involved not only in regulating KV4.3 activation and deactivation, but also CSI and recovery; and (ii) suggest putative electrostatic interactions between acidic S2/S3 and basic S4 residues may be different in KV4.3 from those proposed to exist in Shaker. Functional implications are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.