Abstract
In his later works, the great logician and mathematician Kurt Gödel concentrates his focus on the philosophical problems such as the implications of set theory, the grammar and philosophy of language, objectivity and relativity, the ontological proof of God’s existence, and phenomenology as an exact method. This essay explores how Gödel reads the philosophy (of logic and mathematics) of his time and why he turns his attention to Husserl’s phenomenology for describing the foundations of mathematics. To begin with, Gödel employs Husserl’s significant distinction between Weltanschauung (worldview) philosophy and philosophy as rigorous science: According to the Weltanschauung philosophy, the spirit of time constantly changes so that the ideas discussed and goals attempted are meant to be temporal, and not for the sake of eternal truths, but for that of their own perfection; philosophy as rigorous science, on the other hand, is supratemporal so that its aim is to discover absolute and timeless values. As for the worldview of his time, Gödel sees the development of philosophy and mathematics leaned toward skepticism, pessimism, and positivism. The antinomies of set theory, for instance shaked the grounds on which mathematics and logic are founded. Gödel, too, uses these paradoxes in his incompleteness theorems in order to prove that there are some statements which can neither be proved nor disproved within a system. That also means that arithmetic is not eligible to prove its own consistency. From this, however, Gödel does not come to a conclusion for a nihilism in mathematics and logic: These mere antinomies of set theory do not “necessarily” lead us to logical positivism, and neither to such a materialism, nor to any kind of pessimistic theory of knowledge. The incompleteness theorems assert that there are arithmetical propositions that are true but neither provable nor unprovable within its own calculus, so that arithmetic is intrinsically incomplete. However, instead of Alfred Tarski’s pathological view of examining the detections within the faulty system and then reforming the system all together, Gödel holds that we need to change our methods to find new patterns that describe the antinomies pointing to the unrecoverable reality of the mathematical world. Thus, Gödel does not follow any variation of the Weltanschauung philosophy of his time, either attempting to reduce mathematical realities to mathematical proofs in order to get rid of antinomies, or endeavoring to rescue a complete system of truths by a closed formal system, both Weltanschauung philosophies fail to set forth a realistic method. In this context, Gödel finds the task of phenomenology analogous to what he pursues in terms of a systematic framework for the foundations of mathematics. Husserl’s phenomenology, in Gödel’s account, proliferates the intuition of (mathematical) essences and provides a clarification of meaning of undefinable concepts, such as the antinomies of set theory. Applying the phenomenological reduction to the objective reality of the mathematical world, Gödel believes one obtains a clear experiential reality of the essential characteristics of (mathematical and logical) concepts. Briefly put, what Gödel finds in Husserl’s phenomenology that corresponds to his way of mathematical realism is a thoroughly designated method giving us mathematical essences back again.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.