Abstract
Dialect recognition is one of the most hot topics in the speech analysis area. In this study a system for dialect and language recognition is developed using phonetic and a style based features. The study suggests a new set of feature using one-dimensional LBP feature. The results show that the proposed LBP set of feature is useful to improve dialect and language recognition accuracy. The acquired data involved in this study are three Kurdish dialects (Sorani, Badini and Hawrami) with three neighbor languages (Arabic, Persian and Turkish). The study proposed a new method to interpret the closeness of the Kurdish dialects and their neighbor languages using confusion matrix and a non-metric multi-dimensional visualization technique. The result shows that the Kurdish dialects can be clustered and linearly separated from the neighbor languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.