Abstract
We construct the Kuranishi spaces, or in other words, the versal deformations, for the following classes of connections with fixed divisor of poles $D$: all such connections, as well as for its subclasses of integrable, integrable logarithmic and integrable logarithmic connections with a parabolic structure over $D$. The tangent and obstruction spaces of deformation theory are defined as the hypercohomology of an appropriate complex of sheaves, and the Kuranishi space is a fiber of the formal obstruction map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.