Abstract
In the context of K3 mirror symmetry, the Greene–Plesser orbifolding method constructs a family of K3 surfaces, the mirror of quartic hypersurfaces in P3, starting from a special one-parameter family of K3 varieties known as the quartic Dwork pencil. We show that certain K3 double covers obtained from the three-parameter family of quartic Kummer surfaces associated with a principally polarized abelian surface generalize the relation of the Dwork pencil and the quartic mirror family. Moreover, for the three-parameter family we compute a formula for the rational point-count of its generic member and derive its transformation behavior with respect to (2,2)-isogenies of the underlying abelian surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.