Abstract

The Kullback–Leibler divergence (KLD) between two multivariate generalized Gaussian distributions (MGGDs) is a fundamental tool in many signal and image processing applications. Until now, the KLD of MGGDs has no known explicit form, and it is in practice either estimated using expensive Monte-Carlo stochastic integration or approximated. The main contribution of this letter is to present a closed-form expression of the KLD between two zero-mean MGGDs. Depending on the Lauricella series, a simple way of calculating numerically the KLD is exposed. Finally, we show that the approximation of the KLD by Monte-Carlo sampling converges to its theoretical value when the number of samples goes to the infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.