Abstract

This paper presents a new approach to deriving stability conditions for continuous-time linear systems interconnected with a saturation. The method presented can be extended to handle a dead-zone, or in general, nonlinearities in the form of piecewise linear functions. By representing the saturation as a constrained optimization problem, the necessary (Kuhn-Tucker) conditions for optimality are used to derive linear and quadratic constraints which characterize the saturation. After selecting a candidate Lyapunov function, we pose the question of whether the Lyapunov function is decreasing along trajectories of the system as an implication between the necessary conditions derived from the saturation optimization, and the time derivative of the Lyapunov function. This leads to stability conditions in terms of linear matrix inequalities, which are obtained by an application of the S-procedure to the implication. An example is provided where the proposed technique is compared and contrasted with previous analysis methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.