Abstract

Skew polynomials are a noncommutative generalization of ordinary polynomials that, in recent years, have found applications in coding theory and cryptography. Viewed as functions, skew polynomials have a well-defined evaluation map; however, little is known about skew-polynomial interpolation. In this work, we apply Kotter's interpolation framework to free modules over skew polynomial rings. As a special case, we introduce a simple interpolation algorithm akin to Newton interpolation for ordinary polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.