Abstract

How to construct accurate gene regulatory networks $(GRN)$ has important significance for the research of functional genomics. Several existing gene regulatory network construction methods have the problems of low accuracy and unable to handle large scale network effectively. In order to solve the above problems, this work proposes a gene regulatory network construction method based on k-tree sampling and decomposition (KtreeGRN). It transforms the problem of gene network construction into generating codes. Firstly, it constructs the k-tree structure of the gene regulatory network through sampling dandelion codes uniformly. Then, the k-tree is decomposed into several k-cliques using the tree decomposition algorithm based on the minimum degree selection. It constructs the sub-networks for the genes in each k-clique using the mixed entropy optimizing mutual information method. Finally, it obtains the whole gene regulatory network through merging all the sub-networks. It repeats the above operations (k-tree generation, k-tree decomposition, network generation) several times and gets the final gene regulatory network according to the frequency of edges. Experimental results show that KtreeGRN performs better than other several kinds of gene network construction methods on the simulated dataset of DREAM challenge and two real datasets of Escherichia-coil (E. coli SOS pathway network, E. coli SOS DNA repair network).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.