Abstract
Consider the wreath product $\Gamma = F\wr \mathrm{F_n} = \bigoplus_{\mathrm{F_n}}F\rtimes\mathrm{F_n}$, with $F$ a finite group and $\mathrm{F_n}$ the free group on $n$ generators. We study the Baum-Connes conjecture for this group. Our aim is to explicitly describe the Baum-Connes assembly map for $F\wr \mathrm{F_n}$. To this end, we compute the topological and the analytical K-groups and exhibit their generators. Moreover, we present a concrete 2-dimensional model for $\underline{E} \Gamma$. As a result of our K-theoretic computations, we obtain that $\mathrm K_0(\mathrm C^*_{\mathrm r}(\Gamma))$ is the free abelian group of countable rank with a basis consisting of projections in $\mathrm C^*_{\mathrm r}(\bigoplus_{\mathrm{F_n}}F)$ and $\mathrm K_1(\mathrm C^*_{\mathrm r}(\Gamma))$ is the free abelian group of rank $n$ with a basis consisting of the unitaries coming from the free group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.