Abstract

With Transmit SENSE, we demonstrate the feasibility of uniformly exciting a volume such as the human brain at 7T through the use of an original minimalist transmit k-space coverage, referred to as "k(T) -points." Radio-frequency energy is deposited only at a limited number of k-space locations in the vicinity of the center to counteract transmit sensitivity inhomogeneities. The resulting nonselective pulses are short and need little energy compared to adiabatic or other B 1+-robust pulses available in the literature, making them good candidates for short-repetition time 3D sequences at high field. Experimental verification was performed on three human volunteers at 7T by means of an 8-channel transmit array system. On average, whereas the standard circularly polarized excitation resulted in a 33%-flip angle spread (standard deviation over mean) throughout the brain, and a static radio-frequency shim showed flip angle variations of 17% and up, application of k(T) -point-based excitations demonstrated excellent flip angle uniformity (8%) for a small target flip angle and with sub-millisecond durations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.