Abstract

This article describes a novel software tool, the KSpaceNavigator, which combines sample stage and crystallographic coordinates in a control sphere. It also provides simulated kinematic diffraction spot patterns, Kikuchi line patterns and a unit cell view in real time, thus allowing intuitive and transparent navigation in reciprocal space. By the overlay of experimental data with the simulations and some interactive alignment algorithms, zone axis orientations of the sample can be accessed quickly and with great ease. The software can be configured to work with any double-tilt or tilt-rotation stage and overcomes nonlinearities in existing goniometers by lookup tables. A subroutine for matching the polyhedral shape of a nanoparticle assists with 3D analysis and modeling. The new possibilities are demonstrated with the case of a faceted BaTiO(3) nanoparticle, which is tilted into three low-index zone axes using the piezo-controlled TEAM stage, and with a multiply twinned tetrahedral Ge precipitate in Al, which is tilted into four equivalent zone axes using a conventional double-tilt stage. Applications to other experimental scenarios are also outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.