Abstract

Millimeter wave imaging radar is indispensible for collision avoidance of self-driving system, especially in optically blurred visions. The range points migration (RPM) is one of the most promising imaging algorithms, which provides a number of advantages from synthetic aperture radar (SAR), in terms of accuracy, computational complexity, and potential for multifunctional imaging. The inherent problem in the RPM is that it suffers from lower angular resolution in narrower frequency band even if higher frequency e.g. millimeter wave, signal is exploited. To address this problem, the k-space decomposition based RPM has been developed. This paper focuses on the experimental validation of this method using the X-band or millimeter wave radar system, and demonstrated that our method significantly enhances the reconstruction accuracy in three-dimensional images for the two simple spheres and realistic vehicle targets,

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call