Abstract

A distributed denial of service (DDoS) attack is the most destructive threat for internet-based systems and their resources. It stops the execution of victims by transferring large numbers of network traces. Due to this, legitimate users experience a delay while accessing internet-based systems and their resources. Even a short delay in responses leads to a massive financial loss. Numerous techniques have been proposed to protect internet-based systems from various kinds of DDoS attacks. However, the frequency and strength of attacks are increasing year-after-year. This paper proposes a novel Apache Kafka Streams-based distributed classification approach named KS-DDoS. For this classification approach, firstly, we design distributed classification models on the Hadoop cluster using highly scalable machine learning algorithms by fetching data from Hadoop distributed files system (HDFS). Secondly, we deploy an efficient distributed classification model on the Kafka Stream cluster to classify incoming network traces into nine classes in real-time. Further, this distributed classification approach stores highly discriminative features with predicted outcomes into HDFS for creating/updating models using a new set of instances. We implemented a distributed processing framework-based experimental environment to design, deploy, and validate the proposed classification approach for DDoS attacks. The results show that the proposed distributed KS-DDoS classification approach efficiently classifies incoming network traces with at least 80% classification accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.