Abstract

We consider solving eigenvalue problems or model reduction problems for a quadratic matrix polynomial Iλ 2 − Aλ − B with large and sparse A and B. We propose new Arnoldi and Lanczos type processes which operate on the same space as A and B live and construct projections of A and B to produce a quadratic matrix polynomial with the coefficient matrices of much smaller size, which is used to approximate the original problem. We shall apply the new processes to solve eigenvalue problems and model reductions of a second order linear input–output system and discuss convergence properties. Our new processes are also extendable to cover a general matrix polynomial of any degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.