Abstract

A standard approach to model reduction of large-scale higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for model reduction of first-order systems. This paper presents some results about the structure of the block-Krylov subspaces induced by the matrices of such equivalent first-order formulations of higher-order systems. Two general classes of matrices, which exhibit the key structures of the matrices of first-order formulations of higher-order systems, are introduced. It is proved that for both classes, the block-Krylov subspaces induced by the matrices in these classes can be viewed as multiple copies of certain subspaces of the state space of the original higher-order system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.