Abstract

We study a notion of operator growth known as Krylov complexity in free and interacting massive scalar quantum field theories in d-dimensions at finite temperature. We consider the effects of mass, one-loop self-energy due to perturbative interactions, and finite ultraviolet cutoffs in continuous momentum space. These deformations change the behavior of Lanczos coefficients and Krylov complexity and induce effects such as the “staggering” of the former into two families, a decrease in the exponential growth rate of the latter, and transitions in their asymptotic behavior. We also discuss the relation between the existence of a mass gap and the property of staggering, and the relation between our ultraviolet cutoffs in continuous theories and lattice theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.