Abstract

Recently, Krylov complexity was proposed as a measure of complexity and chaoticity of quantum systems. We consider the stadium billiard as a typical example of the quantum mechanical system obtained by quantizing a classically chaotic system, and numerically evaluate Krylov complexity for operators and states. Despite no exponential growth of the Krylov complexity, we find a clear correlation between variances of Lanczos coefficients and classical Lyapunov exponents, and also a correlation with the statistical distribution of adjacent spacings of the quantum energy levels. This shows that the variances of Lanczos coefficients can be a measure of quantum chaos. The universality of the result is supported by our similar analysis of Sinai billiards. Our work provides a firm bridge between Krylov complexity and classical/quantum chaos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.