Abstract

Rust is a new and promising high-level system programming language. It provides both memory safety and thread safety through its novel mechanisms such as ownership, moves and borrows. Ownership system ensures that at any point there is only one owner of any given resource. The ownership of a resource can be moved or borrowed according to the lifetimes. The ownership system establishes a clear lifetime for each value and hence Rust does not necessarily need garbage collection. These novel features bring Rust high performance, fine-grained low-level control over memory without garbage collection, which differentiate Rust from other existing prevalent languages. For formal analysis of Rust programs and helping programmers learn its new mechanisms and features, a formal semantics of Rust is desired and useful as a fundament for developing related tools. In this paper, we present a formal executable operational semantics of a subset of Rust, called KRust. The semantics is defined in K, a rewriting-based executable semantic framework for programming languages. The executable semantics yields automatically a formal interpreter and verification tools for Rust programs. KRust has been validated by testing with 182 tests, including 157 tests from the official Rust

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.