Abstract
CANDECOMP/PARAFAC (CP) analysis is an extension of low-rank matrix decomposition to higher-way arrays, which are also referred to as tensors. CP extends and unifies several array signal processing tools and has found applications ranging from multidimensional harmonic retrieval and angle-carrier estimation to blind multiuser detection. The uniqueness of CP decomposition is not fully understood yet, despite its theoretical and practical significance. Toward this end, we first revisit Kruskal's permutation lemma, which is a cornerstone result in the area, using an accessible basic linear algebra and induction approach. The new proof highlights the nature and limits of the identification process. We then derive two equivalent necessary and sufficient uniqueness conditions for the case where one of the component matrices involved in the decomposition is full column rank. These new conditions explain a curious example provided recently in a previous paper by Sidiropoulos, who showed that Kruskal's condition is in general sufficient but not necessary for uniqueness and that uniqueness depends on the particular joint pattern of zeros in the (possibly pretransformed) component matrices. As another interesting application of the permutation lemma, we derive a similar necessary and sufficient condition for unique bilinear factorization under constant modulus (CM) constraints, thus providing an interesting link to (and unification with) CP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.