Abstract

The immunogenic cell death (ICD) pathway plays a crucial prognostic role in lung adenocarcinoma (LUAD) therapy. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an upstream mechanism that drives ICD activation, but the interaction of hub genes remains unclear. The present study aimed to investigate the hub genes involved in ICD and the cGAS-STING pathway. The prognostic performance for hub genes and related Gene Ontology (GO) terms were also investigated. Gene expression data of ICD induction and cGAS-STING pathway activation samples were extracted from the Gene Expression Omnibus (GEO) database, and gene expression as well as clinical data of LUAD patients who received pharmaceutical therapy were extracted from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) were identified, and protein-protein interaction (PPI) analysis was used to identify hub genes. Hazard risk (HR) scores were identified using Kaplan-Meier (K-M) and COX analyses. Gene set enrichment analysis (GSEA) was performed to identify the related GO terms, and receiver operating characteristic (ROC) analysis was used to evaluate the prognosis performance of the related gene sets. A total of 22 DEGs were identified in the two GEO datasets, and six hub genes were identified by PPI analysis. Keratin 6A (KRTA6A) and fatty acid 2-hydroxylase (FA2H) were selected as the hub genes after survival analysis. GSEA and ROC analysis indicated that there was no difference between the KRTA6A and FA2H gene sets on prognosis performance. KRTA6A and FA2H are hub genes associated with the induction of cGAS-STING-related ICD in LUAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call