Abstract

Krüppel-like factor 9 (KLF9) has been implicated in mediating a diverse range of biological processes. However, the expression pattern and biological functions of KLF9 in pancreatic ductal adenocarcinoma (PDAC) are still unknown. Here, we evaluated the role of KLF9 in pancreatic ductal adenocarcinoma (PDAC). Overexpression of KLF9 significantly inhibited proliferation and clone formation in PDAC cells, while silencing KLF9 expression dramatically promoted this effect in vitro. Knocking down the expression of KLF9 also promoted the tumorigenesis in the PDAC mouse xneograft model. In in vitro mechanism study, KLF9 negatively regulated the activity of wnt/beta-catenin pathway in Top/Fop reporter assay. Frizzled-5, a key component involving in this pathway, was sharp inhibited by KLF9 both in mRNA and protein level. Furthermore, a KLF9-binding site (BTE) was identified in the promoter region of Frizzled-5. Mutation or deletion of this BTE strongly disrupted the KLF9's regulatory effect on Frizzled-5. More importantly, the expression level of KLF9 was significantly lower in clinical PDAC tissue compared to matched normal tissues and inversely associated with survival of the patients. Together, our findings indicated that KLF9 suppressed tumorigenicity of the pancreatic ductal adenocarcinoma by negatively regulating frizzled-5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.