Abstract
Background.The current standard immunosuppressive regimens, calcineurin inhibitors, have diabetogenic and anti-vascularization effects on islet grafts. KRP-203, a sphingosine-1-phosphate functional antagonist, exerts its immunomodulatory function through lymphocyte sequestration. However, the effect of this antagonist on islets is unclear. We examined the effect of KRP-203 on the islet function and vascularization and sought a calcineurin-free regimen for islet allotransplantation.Methods.KRP-203 was administered for 14 d to mice, then diabetogenic effect was evaluated by blood glucose levels and a glucose tolerance test. Static glucose stimulation, the breathing index, and insulin/DNA were examined using isolated islets. Islet neovascularization was evaluated using a multiphoton laser scanning microscope. After islet allotransplantation with either KRP-203 alone, sirolimus alone, or both in combination, the graft survival was evaluated by blood glucose levels and immunohistochemical analyses. A mixed lymphocyte reaction was also performed to investigate the immunologic characteristics of KRP-203 and sirolimus.Results.No significant differences in the blood glucose levels or glucose tolerance were observed between the control and KRP-203 groups. Functional assays after islet isolation were also comparable. The multiphoton laser scanning microscope showed no inhibitory effect of KRP-203 on islet neovascularization. Although allogeneic rejection was effectively inhibited by KRP-203 monotherapy (44%), combination therapy prevented rejection in most transplanted mice (83%).Conclusions.KRP-203 is a desirable immunomodulator for islet transplantation because of the preservation of the endocrine function and lack of interference with islet neovascularization. The combination of KRP-203 with low-dose sirolimus may be promising as a calcineurin-free regimen for islet allotransplantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.