Abstract
In this paper, we analyze a single server queueing system $C_k/C_m/1$. We construct a general solution space of vector product-forms for steady-state probability and express it in terms of singularities and vectors of the fundamental matrix polynomial $\textbf{Q}(\omega)$. It is shown that there is a strong relation between the singularities of $\textbf{Q}(\omega)$ and the roots of the characteristic polynomial involving the Laplace transforms of the inter-arrival and service times distributions. Thus, some steady-state probabilities may be written as a linear combination of vectors derived in expression of these roots. In this paper, we focus on solving a set of equations of matrix polynomials in the case of multiple roots. As a result, we give a closed-form solution of unboundary steady-state probabilities of $C_k/C_m/1$, thereupon considerably reducing the computational complexity of solving a complicated problem in a general queueing model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.