Abstract
The problems of systems identification, analysis and optimal control have been recently studied using orthogonal functions. The specific orthogonal functions used up to now are the Walsh, the block-pulse, the Laguerre, the Legendre, Haar and many other functions. In the present paper, several operational matrices for integration and differentiation are studied. we introduce the Kronecker convolution product and expanded to the Riemann–Liouville fractional integral of matrices. For some applications, it is often not necessary to compute exact solutions, approximate solutions are sufficient because sometimes computational efforts rapidly increase with the size of matrix functions. Our method is extended to find the exact and approximate solutions of the general system matrix convolution differential equations, the way exists which transform the coupled matrix differential equations into forms for which solutions may be readily computed. Finally, several systems are solved by the new and other approaches and illustrative examples are also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.